Role of alveolar macrophages in Candida-induced acute lung injury.
نویسندگان
چکیده
Recent studies have shown that alveolar macrophages (AMs) not only act as phagocytes but also play a central role as potent secretory cells in various lung diseases, including pneumonia and acute respiratory distress syndrome. The behavior of AMs during disseminated candidiasis, however, is insufficiently elucidated. This study is the first to report disseminated candidiasis in AM-depleted mice and to analyze the effect of AMs on Candida-induced acute lung injury. While all AM-sufficient mice died by day 2 after infection with Candida albicans, no mortality was observed among AM-depleted mice. Unexpectedly, the CFU numbers of C. albicans isolated from the lungs of AM-depleted mice were significantly higher than those for C. albicans isolated from AM-sufficient mice. The lung wet-to-dry weight ratio was lower for AM-depleted mice than for AM-sufficient mice, although this difference was not significant. We found that bronchoalveolar lavage fluid (BALF) from AM-depleted mice in candidemia contained fewer neutrophils than BALF from AM-sufficient mice. In addition, myeloperoxidase activities in lung homogenates of AM-depleted mice were significantly lower than those in homogenates of AM-sufficient mice. A significant decrease in levels of murine macrophage inflammatory protein 2 (MIP-2), a potent chemoattractant for neutrophils, was noted in lung homogenates from AM-depleted mice compared with levels in homogenates from AM-sufficient mice. Immunohistochemical studies using anti-MIP-2 antibodies revealed that AMs were the cellular source of MIP-2 within the lung during candidemia. We observed that AM depletion decreased levels of AM-derived neutrophil chemoattractant, alleviated acute lung injury during candidemia, and prolonged the survival of mice in candidemia, even though clearance of C. albicans from the lungs was reduced.
منابع مشابه
Effect of inhaled NG-nitro-L-arginine methyl ester on Candida-induced acute lung injury.
STUDY OBJECTIVES Nitric oxide (NO) and peroxynitrite play a crucial role in acute lung injury (ALI). Whether NO synthase (NOS) inhibition is beneficial in the treatment of lung injury remains controversial. The objective of this study was to test the hypothesis that local inhibition of NOS in the lung reduces lung injury. DESIGN We developed a model of Candida-induced ALI in the mouse by IV i...
متن کاملTHE ROLE OF ALVEOLAR MACROPHAGES IN THE PRODUCTION OF COLONY –STIMULATING FACTOR BY THE LUNG
The role of alveolar macrophages in the production of granulocyte/ macrophage colony-stimulating factor(s) by the rat lung was investigated. Lavaged lungs, when incubated at proper weight per volume of culture medium, produced the same amount of colony-stimulating factor as unlavaged ones. Both lavaged and unlavaged lungs produced similar types of colony-stimulating factor (s). Prolonged i...
متن کاملA role for hyaluronan in macrophage accumulation and collagen deposition after bleomycin-induced lung injury.
Elevated concentrations of hyaluronan (HA) are associated with the accumulation of macrophages in the lung after injury. We have investigated the role of HA in the inflammatory and fibrotic responses to lung injury using the intratracheal instillation of bleomycin in rats as a model. After bleomycin-induced lung injury, both HA content in bronchoalveolar lavage (BAL) and staining for HA in macr...
متن کاملAlveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury
BACKGROUND Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury. METHODS Lipopolysaccharide was applied ...
متن کاملSilencing airway epithelial cell-derived hepcidin exacerbates sepsis-induced acute lung injury
INTRODUCTION The production of antimicrobial peptides by airway epithelial cells is an important component of the innate immune response to pulmonary infection and inflammation. Hepcidin is a β-defensin-like antimicrobial peptide and acts as a principal iron regulatory hormone. Hepcidin is mostly produced by hepatocytes, but is also expressed by other cells, such as airway epithelial cells. How...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical and diagnostic laboratory immunology
دوره 8 6 شماره
صفحات -
تاریخ انتشار 2001